If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35.3=4.9t^2
We move all terms to the left:
35.3-(4.9t^2)=0
We get rid of parentheses
-4.9t^2+35.3=0
a = -4.9; b = 0; c = +35.3;
Δ = b2-4ac
Δ = 02-4·(-4.9)·35.3
Δ = 691.88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{691.88}}{2*-4.9}=\frac{0-\sqrt{691.88}}{-9.8} =-\frac{\sqrt{}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{691.88}}{2*-4.9}=\frac{0+\sqrt{691.88}}{-9.8} =\frac{\sqrt{}}{-9.8} $
| -14r-14=-18r+18 | | 66.0=(0.5)^n | | 5x-50+38=3x+40 | | -7m+6=-13m | | 0.25+240x=0.40+180x | | 4x+15=65-x | | 5/9c=2/9 | | 14x-6=6x+66 | | 3/6=6/x= | | x3−12x−16=0 | | -6+4p=6+7p | | x²-7x=-4 | | 7x2+29x−30=0 | | 5x+2–2(x–1)=3x+4 | | -u-10-8=9+8u | | 17/34=x/34 | | 12x−1=-61 | | 2(4x+7)=-11+17 | | 13-15x+2=25+10×+× | | −2k−(−5)=+1 | | 4x-7=4x-7=61 | | 5/10=3/n-10 | | 4/7c=15 | | 7=5z+23 | | 6-k=20-4k-8 | | 2x(2x+1)(x^2-16)=0 | | 5/2s-5/2s=0 | | –7(t–4)=77 | | (1/2)^3x=64 | | 5(2x+6)=20+8x+3x | | (2x-1)=20 | | .02(1.09)^x=2 |